题目内容
已知平面内一动点
到点
的距离与点
到
轴的距离的差等于1.(I)求动点
的轨迹
的方程;(II)过点
作两条斜率存在且互相垂直的直线
,设
与轨迹
相交于点
,
与轨迹
相交于点
,求
的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614460289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614476508.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614460289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614507291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614460289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614538313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614554302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614570430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614601314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614538313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614632423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614663337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614538313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614679440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614694599.png)
(1)
和
(
);(2)16
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614726529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614741388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614757414.png)
试题分析:(1)设动点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614460289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614804499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614819831.png)
化简得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614835670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614850421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614726529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614882410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614741388.png)
所以动点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614913288.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614538313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614726529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614741388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614757414.png)
(2)由题意知,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614601314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615022312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614601314.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615053524.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106151001298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615116867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615131724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615147841.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615178443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614663337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615209378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615225916.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615240820.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615256961.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615272169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106153033375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106153181109.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240106153341423.png)
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615350522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010615365381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010614694599.png)
点评:从近几年课标地区的高考命题来看,解析几何综合题主要考查直线和圆锥曲线的位置关系以及范围、最值、定点、定值、存在性等问题,直线与多种曲线的位置关系的综合问题将会逐步成为今后命题的热点,尤其是把直线和圆的位置关系同本部分知识的结合,将逐步成为今后命题的一种趋势.近几年高考题中经常出现了以函数、平面向量、导数、数列、不等式、平面几何、数学思想方法等知识为背景,综合考查运用圆锥曲线的有关知识分析问题、解决问题的能力
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目