题目内容
【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。
- 求椭圆的方程;
- 设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值
【答案】,
【解析】(1)解:由,得,再由,得
由题意可知,
解方程组 得 a=2,b=1
所以椭圆的方程为
(2)解:由(1)可知A(-2,0)。设B点的坐标为(x1,,y1),直线l的斜率为k,则直线l的方程为y=k(x+2),
于是A,B两点的坐标满足方程组
由方程组消去Y并整理,得
由得
设线段AB是中点为M,则M的坐标为
以下分两种情况:
(1)当k=0时,点B的坐标为(2,0)。线段AB的垂直平分线为y轴,于是
(2)当K时,线段AB的垂直平分线方程为
令x=0,解得
由
整理得
综上
练习册系列答案
相关题目
【题目】为了解重庆市高中学生在面对新高考模式“3+1+2”的科目选择中,物理与历史的二选一是否与性别有关,某高中随机对该校50名高一学生进行了问卷调查得到相关数据如下列联表:
选物理 | 选历史 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 |
己知在这50人中随机抽取1人,抽到选物理的人的概率为。
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为物理与历史的二选一与性别有关?
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式,其中为样本容量)
(2)己知在选物理的10位女生中有3人选择了化学、地理,有5人选择了化学、生物,有2人选择了生物、地理,现从这10人中抽取3人进行更详细的学科意愿调查,记抽到的3人中选择化学的有X人,求随机变量X的分布列及数学期望。