题目内容
14.在Rt△ABC中,∠A=30°,动点D在斜边AB上运动,则∠BCD≤60°的概率为$\frac{1}{2}$.分析 由题意,本题符合几何概型,设AB中点为E,当D在AE上时,∠BCD≤60°,由此得到所求.
解答 解:设AB中点为E,当D在AE上时,∠BCD≤60°,由几何概型公式得到∠BCD≤60°的概率为$\frac{AE}{AB}=\frac{1}{2}$;
故答案为:$\frac{1}{2}$
点评 本题考查了几何概型的概率求法;关键是明确符合条件的测度,利用公式解答.
练习册系列答案
相关题目
9.现有3名老师,8名男生和5名女生共16人,若需1名老师和1名学生参加,则不同的选法种数为( )
A. | 39种 | B. | 24种 | C. | 15种 | D. | 16种 |
19.设O为△ABC的外心(三角形外接圆的心),若$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\frac{1}{2}$|$\overrightarrow{AB}$|2,则$\frac{AC}{AB}$=( )
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{3}$ |
3.函数f(x)=$\frac{\sqrt{2x+1}}{x-3}$的定义域为( )
A. | {x|x≥-$\frac{1}{2}$} | B. | {x|x>-$\frac{1}{2}$且x≠3} | C. | {x|x≥-$\frac{1}{2}$且x≠3} | D. | {x|x≠3} |
4.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布表和频率分布直方图如下,回答下列问题:
(1)分别求出a,b,x,y的值,并补全频率分布直方图;
(2)估计这次环保知识竞赛平均分;
(3)若从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率有多大?
分组 | 人数 | 频率 |
[39.5,49.5) | a | 0.10 |
[49.5,59.5) | 9 | x |
[59.5,69.5) | b | 0.15 |
[69.5,79.5) | 18 | 0.30 |
[79.5,89.5) | 15 | y |
[89.5,99.5] | 3 | 0.05 |
(2)估计这次环保知识竞赛平均分;
(3)若从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率有多大?