ÌâÄ¿ÄÚÈÝ
5£®Èçͼ£¬ÒÑÖªÍÖÔ²C1ÓëC2µÄÖÐÐÄÔÚ×ø±êÔµãO£¬³¤Öá¾ùΪMNÇÒÔÚxÖáÉÏ£¬¶ÌÖ᳤·Ö±ðΪ2m£¬2n£¨m£¾n£©£¬¹ýÔµãÇÒ²»ÓëxÖáÖغϵÄÖ±ÏßlÓëC1£¬C2µÄËĸö½»µã°´×Ý×ø±ê´Ó´óµ½Ð¡ÒÀ´ÎΪA¡¢B¡¢C¡¢D£®¼Ç¦Ë=$\frac{m}{n}$£¬¡÷BDMºÍ¡÷ABNµÄÃæ»ý·Ö±ðΪS1ºÍS2£®£¨1£©ÉèÖ±Ïßl£ºy=kx£¨k£¾0£©£¬ÈôS1=3S2£¬Ö¤Ã÷£ºB£¬CÊÇÏ߶ÎADµÄËĵȷֵ㣻
£¨2£©µ±Ö±ÏßlÓëyÖáÖغÏʱ£¬ÈôS1=¦ËS2£¬Çó¦ËµÄÖµ£»
£¨3£©µ±¦Ë±ä»¯Ê±£¬ÊÇ·ñ´æÔÚÓë×ø±êÖá²»ÖغϵÄÖ±Ïßl£¬Ê¹µÃS1=¦ËS2£¿²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ¶Ô³ÆÐÔ£¬½áºÏS1=3S2£¬ÓÖÒòΪM£¬Nµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬Ö¤³ö¼´¿É£»
£¨2£©ÓÉn+m=¦Ë£¨m-n£©£¬µÃµ½¦Ë2-2¦Ë-1=0£¬½â³ö¼´¿É£»
£¨3£©·Ö±ðÉè³öÍÖÔ²C1£¬C2ºÍlµÄ·½³Ì£¬µÃµ½£¨¦Ë-1£©xA=£¨¦Ë+1£©xB£¬Í¨¹ýÌÖÂۦ˵ķ¶Î§£¬´Ó¶øÇó³ö½áÂÛ£®
½â´ð £¨1£©Ö¤Ã÷£ºÒòΪS1=3S2£¬ÓÖÒòΪM£¬Nµ½Ö±ÏßlµÄ¾àÀëÏàµÈ£¬
ËùÒÔ|BD|=3|BA|£¬
ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬µÃµ½|DC|=|BA|£¬|CO|=|OB|£¬
ËùÒÔ|BC|=2|BA|⇒|BO|=|BA|£¬¼´BÊÇOAÖе㣬
ͬÀí£¬CÊÇODÖе㣬B£¬CÊÇADµÄËķֵ㣬µÃÖ¤£®
£¨2£©½â£ºÒòΪS1=¦ËS2£¬ËùÒÔn+m=¦Ë£¨m-n£©£¬
¡à¦Ë=$\frac{m+n}{m-n}$=$\frac{¦Ë+1}{¦Ë-1}$£¬
¡à¦Ë2-2¦Ë-1=0£¬
½âµÃ£º¦Ë=$\sqrt{2}$+1£¨Ð¡ÓÚ1µÄ¸ùÉáÈ¥£©£®
£¨3£©½â£ºÉèÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{m}^{2}}$=1£¨a£¾m£©£¬C2£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1£¬Ö±Ïßl£ºy=kx£¨k¡Ù0£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{m}^{2}}=1}\end{array}\right.$⇒x2=$\frac{{{a}^{2}m}^{2}}{{m}^{2}{{+a}^{2}k}^{2}}$£¬
¼´£º${{x}_{A}}^{2}$=$\frac{{{a}^{2}m}^{2}}{{m}^{2}{{+a}^{2}k}^{2}}$£¬Í¬Àí¿ÉµÃ£º${{x}_{B}}^{2}$=$\frac{{{a}^{2}n}^{2}}{{n}^{2}{{+a}^{2}k}^{2}}$£¬
ÓÖ¡ß¡÷BDMºÍ¡÷ABNµÄ¸ßÏàµÈ£¬
¡à$\frac{{S}_{1}}{{S}_{2}}$=$\frac{BD}{AB}$=$\frac{{x}_{B}{-x}_{D}}{{x}_{A}{-x}_{B}}$=$\frac{{x}_{B}{+x}_{A}}{{x}_{A}{-x}_{B}}$£¬
Èô´æÔÚ·ÇÁãʵÊýkʹµÃS1=¦ËS2£¬ÔòÓУ¨¦Ë-1£©xA=£¨¦Ë+1£©xB£¬
¼´£º$\frac{{{¦Ë}^{2}£¨¦Ë-1£©}^{2}}{{{¦Ë}^{2}n}^{2}{{+a}^{2}k}^{2}}$=$\frac{{£¨¦Ë+1£©}^{2}}{{n}^{2}{{+a}^{2}k}^{2}}$£¬½âµÃ£ºk2=$\frac{{{4n}^{2}¦Ë}^{3}}{{a}^{2}{£¨¦Ë}^{2}-2¦Ë-1£©{£¨¦Ë}^{2}+1£©}$£¬
¡àµ±¦Ë£¾1+$\sqrt{2}$ʱ£¬k2£¾0£¬´æÔÚÕâÑùµÄÖ±Ïßl£»
µ±1£¼¦Ë¡Ü1+$\sqrt{2}$ʱ£¬¦Ë2¡Ü0£¬²»´æÔÚÕâÑùµÄÖ±Ïߣ®
µãÆÀ ±¾Ì⿼²ìÁ˺¬ÓвÎÊýµÄÖ±ÏߺÍÍÖÔ²µÄ×ÛºÏÎÊÌ⣬µÚÈýÎÊÉè³öÍÖÔ²C1£¬C2ºÍlµÄ·½³Ì£¬µÃµ½£¨¦Ë-1£©xA=£¨¦Ë+1£©xBÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®
¢Ùsin£¨n¦Ð+$\frac{4}{3}$¦Ð£©
¢Úcos£¨2n¦Ð+$\frac{¦Ð}{6}$£©£»
¢Ûsin£¨2n¦Ð+$\frac{¦Ð}{3}$£©£»
¢Ücos[£¨2n+1£©¦Ð-$\frac{¦Ð}{6}$]£»
¢Ýsin[£¨2n+1£©¦Ð-$\frac{¦Ð}{3}$]£¨n¡ÊZ£©£®
A£® | ¢Ù¢Ú | B£® | ¢Ù¢Û¢Ü | C£® | ¢Ú¢Û¢Ý | D£® | ¢Ù¢Ý |
A£® | $\frac{1}{4}$ | B£® | $\frac{\sqrt{3}}{4}$ | C£® | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D£® | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
A£® | 92 | B£® | 47 | C£® | 46 | D£® | 45 |