题目内容

【题目】已知正项等比数列{an}满足a1 , 2a2 , a3+6成等差数列,且a42=9a1a5
(1)求数列{an}的通项公式;
(2)设bn=( an+1)an , 求数列{bn}的前n项和Tn

【答案】
(1)解:设正项等比数列{an}的公比为q>0,∵a1,2a2,a3+6成等差数列,∴2×2a2=a3+6+a1,又a42=9a1a5

,解得a1=q=3.

∴an=3n


(2)解:bn=( an+1)an=(2n+1)3n

∴数列{bn}的前n项和Tn=3×3+5×32+…+(2n+1)3n

3Tn=3×32+5×33+…+(2n﹣1)3n+(2n+1)3n+1

∴﹣2Tn=32+2×(32+33+…+3n)﹣(2n+1)3n+1= +3﹣(2n+1)3n+1=﹣2n3n+1

∴Tn=n3n+1


【解析】(1)利用等差数列与等比数列的通项公式即可得出.(2)bn=( an+1)an=(2n+1)3n . 再利用“错位相减法”与等比数列的前n项和公式即可得出.
【考点精析】掌握数列的前n项和和数列的通项公式是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网