题目内容
【题目】如图,在平面直角坐标系中, 已知圆 ,椭圆 ,为椭圆右顶点.过原点且异于坐标轴的直线与椭圆交于两点,直线与圆的另一交点为,直线与圆的另一交点为,其中.设直线的斜率分别为.
(1)求的值;
(2)记直线的斜率分别为,是否存在常数,使得?若存在,求值;若不存在,说明理由;
(3)求证:直线必过点.
【答案】(1)(2)(3)详见解析
【解析】
试题分析:(1)设,则,代入椭圆方程,运用直线的斜率公式,化简即可得到所求值;(2)联立直线的方程和圆方程,求得的坐标;联立直线的方程和椭圆方程,求得的坐标,再求直线,和直线的斜率,即可得到结论;
试题解析:(1)设,则,
所以
(2)联立得,
解得,
联立得,
解得,
所以,,
所以,故存在常数,使得.
练习册系列答案
相关题目