题目内容
5.设α,β是方程x2-2mx+2-m=0(x∈R)的两个实根,则α2+β2的最小值为( )A. | 2 | B. | 0 | C. | 16 | D. | -$\frac{17}{4}$ |
分析 根据二次方程根与系数的关系,可得α+β=2m,αβ=2-m,且△=4m2+4m-8≥0,即m≤-2,或m≥1,构造函数y=α2+β2=(α+β)2-2αβ=4m2+2m-4,结合二次函数的图象和性质,可得答案.
解答 解:∵α,β是方程x2-2mx+2-m=0,
故α+β=2m,αβ=2-m,且△=4m2+4m-8≥0,即m≤-2,或m≥1,
则α2+β2=(α+β)2-2αβ=4m2+2m-4,
由y=4m2+2m-4的图象是开口朝上,且以m=$-\frac{1}{4}$为对称轴的抛物线,
故当m=1时,取最小值2,
故选:A.
点评 本题考查的知识点是二次函数的性质,熟练掌握二次函数的图象和性质,是解答的关键.
练习册系列答案
相关题目
10.某工人生产合格零售的产量逐月增长,前5个月的产量如表所示:
(I)若从这5组数据中抽出两组,求抽出的2组数据恰好是相邻的两个月数据的概率;
(Ⅱ)请根据所给5组数据,求出 y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并根据线性回归方程预测该工人第6个月生产的合格零件的件数.
(附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
月份x | 1 | 2 | 3 | 4 | 5 |
合格零件y(件) | 50 | 60 | 70 | 80 | 100 |
(Ⅱ)请根据所给5组数据,求出 y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并根据线性回归方程预测该工人第6个月生产的合格零件的件数.
(附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)