ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1£¨a1£¾b1£¾0£©ºÍË«ÇúÏßC2£º$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1£¨a2£¾0£¬b2£¾0£©ÓÐÏàͬµÄ½»µãF1£¬F2£¬ÇÒÍÖÔ²C1ÓëË«ÇúÏßC2ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪP£¬Èô2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{OP}$=$\overrightarrow{O{F}_{2}}$2£¨OΪ×ø±êԵ㣩£¬ÔòË«ÇúÏßC2µÄÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©A£® | £¨$\sqrt{2}$£¬+¡Þ£© | B£® | £¨2£¬+¡Þ£© | C£® | £¨$\sqrt{3}$£¬+¡Þ£© | D£® | £¨3£¬+¡Þ£© |
·ÖÎö ÀûÓÃ2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{OP}$=$\overrightarrow{O{F}_{2}}$2£¬È·¶¨PµÄºá×ø±êΪx0=$\frac{c}{2}$£¬Ôٵóöe1e2=2£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºÒòΪ2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{OP}$=$\overrightarrow{O{F}_{2}}$2£¬
ËùÒÔ2|$\overrightarrow{O{F}_{2}}$||$\overrightarrow{OP}$|cos¡ÏPOF2=|$\overrightarrow{O{F}_{2}}$|2£¬
ËùÒÔ2|$\overrightarrow{OP}$|cos¡ÏPOF2=|$\overrightarrow{O{F}_{2}}$|£¬
ËùÒÔPÔÚOF2ÖеÄÉäӰΪOF2µÄÖе㣬
ËùÒÔPµÄºá×ø±êΪx0=$\frac{c}{2}$£¬
ÒòΪ|PF2|=a1-ex0=e2x0-a2£¬
ËùÒÔx0=$\frac{{a}_{1}+{a}_{2}}{{e}_{1}+{e}_{2}}$=$\frac{c}{2}$£¬
ËùÒÔ2£¨a1+a2£©=c£¨e1+e2£©£¬
ËùÒÔa1a2=$\frac{{c}^{2}}{2}$£¬
ËùÒÔe1e2=2£¬
ËùÒÔe2=$\frac{2}{{e}_{1}}$£¬
ÒòΪe1¡Ê£¨0£¬1£©£¬
ËùÒÔe2¡Ê£¨2£¬+¡Þ£©£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éÍÖÔ²¡¢Ë«ÇúÏßµÄÐÔÖÊ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | $\sqrt{3}$ | B£® | ¡À$\sqrt{3}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | ¡À$\frac{{\sqrt{3}}}{3}$ |
A£® | 1 | B£® | 2 | C£® | 4 | D£® | $\frac{1}{2}$ |