题目内容
【题目】等差数列{an}的公差d≠0满足成等比数列,若=1,Sn是{}的前n项和,则的最小值为________.
【答案】4
【解析】
成等比数列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分离常数法化简后,利用基本不等式求出式子的最小值.
∵成等比数列,a1=1,
∴= ,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴==n+1+﹣2≥2﹣2=4,
当且仅当n+1=时取等号,此时n=2,且取到最小值4,
故答案为:4.
【点睛】
本题考查了等差数列的通项公式、前n项和公式,等比中项的性质,基本不等式求最值,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.
【题型】填空题
【结束】
17
【题目】设是公比为正数的等比数列,,
(1)求的通项公式;
(2)设是首项为1,公差为2的等差数列,求数列的前项和
【答案】(1)(2)
【解析】
(1)根据等比数列的通项公式得到:,解得二次方程可得到或(舍去),进而得到数列的通项;(2)已知数列的类型是等差数列与等比数列求和的问题,根据等差等比数列求和公式得到结果即可.
解:(1)设为等比数列的公比,则由,得:
即,解得:或(舍去)
所以的通项公式为
(2) 由 等 差 数 列 的 通 项 公 式 得 到:
由 等 差 数 列 求 和 公 式 和 等 比 数 列 前 n 项 和 公 式 得 到
练习册系列答案
相关题目