题目内容

【题目】已知椭圆C1ab0)的左右焦点分别为F1F2,点P是椭圆C上一点,以PF1为直径的圆Ex2过点F2

1)求椭圆C的方程;

2)过点P且斜率大于0的直线l1C的另一个交点为A,与直线x4的交点为B,过点(3)且与l1垂直的直线l2与直线x4交于点D,求△ABD面积的最小值.

【答案】1;(222

【解析】

1)根据题意求得椭圆的焦点坐标,利用椭圆的定义求得ab的值,即可求得椭圆方程;

2)设直线l1的方程,代入涂鸦方程,利用韦达定理求得A的横坐标,求得直线l2方程,求得D点坐标,利用三角形的面积公式及基本不等式即可求得ABD面积的最小值.

1)在圆E的方程中,令y0,得到:x24

所以F1(﹣20),F220),

又因为,所以P点坐标为

所以,则b2

因此椭圆的方程为

2)设直线l1ykx2)(k0),

所以点B的坐标为

AxAyA),DxDyD),将直线l1代入椭圆方程得:(1+2k2x2+4k8k2x+8k28k40

所以xPxA,所以xA

直线l2的方程为yx3),所以点D坐标为

所以SABD4xA|yByD|

2k222

当且仅当2k,即k时取等号,

综上,△ABD面积的最小值22

练习册系列答案
相关题目

【题目】某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:

1

1

2

3

4

5

6

7

6

11

21

34

66

101

196

根据以上数据,绘制了散点图.

1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由).

2)根据(1)的判断结果及表1中的数据,建立关于的回归方程,并预测活动推出第8天使用扫码支付的人次.

3)推广期结束后,为更好的服务乘客,车队随机调查了100人次的乘车支付方式,得到如下结果:

2

支付方式

现金

乘车卡

扫码

人次

10

60

30

已知该线路公交车票价2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据调査结果发现:使用扫码支付的乘客中有5名乘客享受7折优惠,有10名乘客享受8折优惠,有15名乘客享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.

参考数据:

62.14

1.54

2535

50.12

3.47

其中.

参考公式:

对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网