ÌâÄ¿ÄÚÈÝ
6£®ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬ÉèµãP£¨x0£¬y0£©ÎªÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$ÉÏÒ»µã£¬¹ýµãPµÄÖ±Ïß${l_1}£º\frac{{{x_0}x}}{4}+\frac{{{y_0}y}}{3}=1$½»Ö±Ïßl2£ºx=4ÓÚµãQ£®£¨1£©Ö¤Ã÷£ºÖ±Ïßl1ΪÍÖÔ²¦£µÄÇÐÏߣ»
£¨2£©xÖáÉÏÊÇ·ñ´æÔÚ¶¨µãR£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²¹ý¶¨µãR£¿Èô´æÔÚ£¬Çó³öRµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©½«µãP£¨x0£¬y0£©´úÈëÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬¿ÉµÃy=$\frac{3}{{y}_{0}}$£¨1-$\frac{{x}_{0}x}{4}$£©ÔÙ´úÈëÍÖÔ²¦££¬ÀûÓøùµÄÅбðʽ¡÷=0£¬¼´µÃ½áÂÛ£»
£¨2£©É趨µãR£¨r£¬0£©£¬Í¨¹ý$\overrightarrow{RP}$•$\overrightarrow{RQ}$=0£¬¿ÉµÃr=1£¬¼´µÃ½áÂÛ£®
½â´ð £¨1£©Ö¤Ã÷£º¡ßµãP£¨x0£¬y0£©ÎªÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$ÉÏÒ»µã£¬
¡à$\frac{{x}_{0}x}{4}$+$\frac{{y}_{0}y}{3}$=1£¬¼´y=$\frac{3}{{y}_{0}}$£¨1-$\frac{{x}_{0}x}{4}$£©£¬
´úÈëÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬
ÕûÀí¿ÉµÃ£º£¨$\frac{{{x}_{0}}^{2}}{4}$+$\frac{{{y}_{0}}^{2}}{3}$£©x2-2x0x+4£¨1-$\frac{{{y}_{0}}^{2}}{3}$£©=0£¬
¡ß$\frac{{{x}_{0}}^{2}}{4}$+$\frac{{{y}_{0}}^{2}}{3}$=1£¬¡àx2-2x0x+4£¨1-$\frac{{{y}_{0}}^{2}}{3}$£©=0£¬
¡ß¡÷=£¨-2x0£©2-16£¨1-$\frac{{{y}_{0}}^{2}}{3}$£©=0£¬
¡àÖ±Ïßl1ΪÍÖÔ²¦£µÄÇÐÏߣ»
£¨2£©½áÂÛ£º´æÔÚ¶¨µãR£¨1£¬0£©£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²¹ý¶¨µãR£®
ÀíÓÉÈçÏ£º
ÒÀÌâÒ⣬P£¨x0£¬y0£©£¬Q£¨4£¬$\frac{3£¨1-{x}_{0}£©}{{y}_{0}}$£©£¬
É趨µãR£¨r£¬0£©£¬Ôò$\overrightarrow{RP}$=£¨x0-r£¬y0£©£¬$\overrightarrow{RQ}$=£¨4-r£¬$\frac{3£¨1-{x}_{0}£©}{{y}_{0}}$£©£¬
¡ß$\overrightarrow{RP}$•$\overrightarrow{RQ}$=0£¬¡à£¨x0-r£©£¨4-r£©+y0•$\frac{3£¨1-{x}_{0}£©}{{y}_{0}}$=0£¬
¼´£¨1-r£©x0+£¨r2-4r+3£©=0£¬
¹Ê$\left\{\begin{array}{l}{1-r=0}\\{{r}^{2}-4r+3=0}\end{array}\right.$£¬½âµÃr=1£¬
¡à´æÔÚ¶¨µãR£¨1£¬0£©£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²¹ý¶¨µãR£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | $\sqrt{3}$ | B£® | 2 | C£® | $\sqrt{5}$ | D£® | $\sqrt{3}$+1 |