题目内容
16.F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,点P在双曲线右支上,△POF(O为坐标原点)满足OF=OP=$\sqrt{5}{,_{\;}}$PF=2,则双曲线的离心率为( )A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{3}$+1 |
分析 运用余弦定理可得cos∠OFP,求得sin∠OFP,求得P的坐标,代入双曲线方程,结合a,b,c的关系,求得a,再由离心率公式,计算即可得到.
解答 解:由余弦定理可得cos∠OFP=$\frac{(\sqrt{5})^{2}+{2}^{2}-(\sqrt{5})^{2}}{2×\sqrt{5}×2}$=$\frac{\sqrt{5}}{5}$,
则sin∠OFP=$\sqrt{1-\frac{1}{5}}$=$\frac{2\sqrt{5}}{5}$,
可设P为第一象限的点,
即有P($\sqrt{5}$-2cos∠OFP,2sin∠OFP),
即为P($\frac{3\sqrt{5}}{5}$,$\frac{4\sqrt{5}}{5}$),
代入双曲线方程,可得
$\frac{9}{5{a}^{2}}$-$\frac{16}{5{b}^{2}}$=1,
又a2+b2=5,
解得a=1,b=2,
则离心率为e=$\frac{c}{a}$=$\sqrt{5}$.
故选:C.
点评 本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查余弦定理和任意角的三角函数的定义,考查运算能力,属于中档题.
练习册系列答案
相关题目
6.在△ABC中,∠CAB=∠CBA=30°,AC,BC边上的高分别为BD,AE,则以A,B为焦点,且过D,E两点的椭圆和双曲线的离心率的乘积为( )
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
4.已知点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)右支上的动点,F1、F2分别是双曲线的左、右焦点,∠F1PF2的角平分线l与x轴交于点Q(x0,0),设双曲线的半焦距为c,若x0的范围是0<x0≤$\frac{2}{3}$c,则双曲线的离心率是( )
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
7.某地区有小学18所,中学12所,大学6所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率;
(2)若某小学被抽取,该小学五个年级近视眼率y的数据如下表:
根据前四个年级的数据,利用最小二乘法求y关于x的线性回归直线方程,并计算五年级近视眼率的估计值与实际值之间的差的绝对值.
(附:回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
(1)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率;
(2)若某小学被抽取,该小学五个年级近视眼率y的数据如下表:
年级号x | 1 | 2 | 3 | 4 | 5 |
近视眼率y | 0.1 | 0.15 | 0.2 | 0.3 | 0.39 |
(附:回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)