题目内容

15.如图AB是圆O的一条弦,过点A作圆的切线AD,作BC⊥AC,与该圆交于点D,若AC=2$\sqrt{3}$,CD=2.
(1)求圆O的半径;
(2)若点E为AB中点,求证O,E,D三点共线.

分析 (1)取BD中点为F,连结OF,求出BC,可得BF,利用勾股定理求圆O的半径;
(2)证明四边形OADB为平行四边形,利用E为AB的中点,即可证明O,E,D三点共线.

解答 (1)解:取BD中点为F,连结OF,由题意知,OF∥AC,OF=AC.
∵AC为圆O的切线,BC为割线,
∴CA2=CD•CB,
由$AC=2\sqrt{3},CD=2$,∴BC=6,
∴BD=4,BF=2
在Rt△OBF中,由勾股定理得,$r=OB=\sqrt{O{F^2}+B{F^2}}=4$.(5分)
(2)证明:由(1)知,OA∥BD,OA=BD
∴四边形OADB为平行四边形,
又∵E为AB的中点,
∴OD与AB交于点E,
∴O,E,D三点共线.(5分)

点评 本小题主要考查平面几何的证明,具体涉及到圆的切线的性质,切割线定理等内容.本小题重点考查考生对平面几何推理能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网