题目内容
【题目】对于正整数集合,如果去掉其中任意一个元素之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合为“和谐集”.
()判断集合是否是“和谐集”(不必写过程).
()请写出一个只含有个元素的“和谐集”,并证明此集合为“和谐集”.
()当时,集合,求证:集合不是“和谐集”.
【答案】(1) 集合不是“和谐集”.
(2) 集合是“和谐集”;证明见解析.
(3)证明见解析.
【解析】
(1)根据定义,判断集合{1,2,3,4,5}不是“和谐集”;(2)集合,根据定义验证即可;(3)不妨设,将集合分成两个交集为空集的子集,且两个子集元素之和相等,则有①,或者②,
将集合分成两个交集为空集的子集,且两个子集元素之和相等,
则有③,或者④,由定义得出矛盾即可证明结论.
()集合不是“和谐集”.
()集合,
证明:∵,
,
,
,
,
,
,
∴集合是“和谐集”.
()证明:不妨设,将集合分成两个交集为空集的子集,且两个子集元素之和相等,则有①,或者②,
将集合分成两个交集为空集的子集,且两个子集元素之和相等,
则有③,或者④,
由①③得,矛盾,由①④得,矛盾,由②③得矛盾,由②④得矛盾,
故当时,集合一定不是“和谐集”.
【题目】下表中提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的四组对应数据.
6 | 8 | 10 | 12 | |
2.5 | 3 | 4 | 4.5 |
(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为45吨标准煤,试根据(1)中的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.