题目内容
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连结AD交圆O于点E,连结BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.
(1)平分(2)
(1)BE平分∠ABC.
∵CD=AC,∴∠D=∠CAD.∵AB=AC,∴∠ABC=∠ACB.
∵∠EBC=∠CAD,∴∠EBC=∠D=∠CAD.
∵∠ABC=∠ABE+∠EBC,∠ACB=∠D+∠CAD,
∴∠ABE=∠EBC,即BE平分∠ABC.
(2)由(1)知∠CAD=∠EBC=∠ABE.∵∠AFE=∠ABE,
∴△AEF∽△BEA.∴.∵AE=6,BE=8,∴EF=.
∵CD=AC,∴∠D=∠CAD.∵AB=AC,∴∠ABC=∠ACB.
∵∠EBC=∠CAD,∴∠EBC=∠D=∠CAD.
∵∠ABC=∠ABE+∠EBC,∠ACB=∠D+∠CAD,
∴∠ABE=∠EBC,即BE平分∠ABC.
(2)由(1)知∠CAD=∠EBC=∠ABE.∵∠AFE=∠ABE,
∴△AEF∽△BEA.∴.∵AE=6,BE=8,∴EF=.
练习册系列答案
相关题目