题目内容
【题目】已知双曲线 ﹣ =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过右焦点F2且与x轴垂直的直线与双曲线两条渐近线分别交于A,B两点,若△ABF1为等腰直角三角形,且|AB|=4 ,P(x,y)在双曲线上,M( , ),则|PM|+|PF2|的最小值为( )
A. ﹣1
B.2
C.2 ﹣2
D.3
【答案】D
【解析】解:双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),
渐近线方程为y=± x,
令x=c,解得y=± ,
可得|AB|= ,
若△ABF1为等腰直角三角形,且|AB|=4 ,
即有 =4 ,2c=2 ,c2=a2+b2,
解得a=1,b=2,c= ,
即有双曲线的方程为x2﹣ =1,
由题意可知若P在左支上,由双曲线的定义可得|PF2|=2a+|PF1|,
|PM|+|PF2|=|PM|+|PF1|+2a≥|MF1|+2= +2=7,
当且仅当M,P,F1共线时,取得最小值7;
若P在右支上,由双曲线的定义可得|PF2|=|PF1|﹣2a,
|PM|+|PF2|=|PM|+|PF1|﹣2a≥|MF1|﹣2= ﹣2=3,
当且仅当M,P,F1共线时,取得最小值3.
综上可得,所求最小值为3.
故选:D.
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图.
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)