题目内容
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面积为,求C的大小。
【答案】(1)(2)
【解析】试题分析:(1)先根据正弦定理将边化为角,再根据诱导公式化简得cosC=-,即得角C的大小;(2)先根据三角形面积公式得b,再根据余弦定理得c.
试题解析:解:(I)在△ABC中,∵2acosC+bcosC+ccosB=0,
∴由正弦定理可得:2sinAcosC+sinBcosC+sinCcosB=0,
∴2sinAcosC+sin(B+C)=0,..
又△ABC中,sin(B+C)=sinA≠0.∴cosC=-,.
∵0<C< .∴C=...
(II)由S=absinC=,a=2,C=得b=1.
由余弦定理得c=4+1-2×2×1×(-)=7,∴c=
练习册系列答案
相关题目