题目内容
【题目】若不等式x2+2ax+1≥0对于一切x∈(0, ]成立,则a的最小值是 .
【答案】-
【解析】解:当x∈(0, ]时,
不等式x2+2ax+1≥0可化为a≥﹣ x﹣ ,
设f(x)=﹣ x﹣ ,x∈(0, ],
且函数f(x)在x∈(0, ]上是单调增函数,
最大值是f( )=﹣ × ﹣ =﹣ ,
∴a的最小值是﹣ .
所以答案是:- .
【考点精析】本题主要考查了解一元二次不等式的相关知识点,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能正确解答此题.
【题目】下表给出三种食物的维生素含量及其成本:
|
| ||
维生素A(单位/千克) | 4000 | 5000 | 300 |
维生素B(单位/千克) | 700 | 100 | 300 |
成本(元/千克) | 6 | 4 | 3 |
现欲将三种食物混合成本100千克的混合食品,要求至少含35000单位维生素A,40000单位维生素B,采用何种配比成本最小?
【题目】我校举行的 “青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 8 | 0.16 |
第2组 | [60,70) | a | ▓ |
第3组 | [70,80) | 20 | 0.40 |
第4组 | [80,90) | ▓ | 0.08 |
第5组 | [90,100] | 2 | b |
合计 | ▓ | ▓ |
(1)求出的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;
(3)根据频率分布直方图,估计这50名学生成绩的众数、中位数和平均数。