题目内容
【题目】下表给出三种食物的维生素含量及其成本:
|
| ||
维生素A(单位/千克) | 4000 | 5000 | 300 |
维生素B(单位/千克) | 700 | 100 | 300 |
成本(元/千克) | 6 | 4 | 3 |
现欲将三种食物混合成本100千克的混合食品,要求至少含35000单位维生素A,40000单位维生素B,采用何种配比成本最小?
【答案】三种食物分别为30千克,10千克,60千克时成本最小
【解析】试题分析:应用问题首先要认真细致的审题,逐字逐句的读题,把实际问题转化为数学问题.本题为线性规划应用题,设出三种食物的重量x,y,z千克,根据题目的要求,列出二元一次不等式组,写出目标函数,利用简单的线性规划解题方法,作出可行域,找出最优解,求出目标函数的最小值,给出答案.
试题解析:
解:设三种食物分别用千克, 千克, 千克,
则满足 ,
再设成本为元,则,
约束条件可转化为
目标函数可转化为,
作出上面不等式组表示的平面区域,求得最优解为,
从而元,
答:三种食物分别却30千克,10千克,60千克时成本最小.
练习册系列答案
相关题目
【题目】国Ⅳ标准规定:轻型汽车的屡氧化物排放量不得超过80mg/km.根据这个标准,检测单位从某出租车公司运营的A、B两种型号的出租车中分别抽取5辆,对其氮氧化物的排放量进行检测,检测结果记录如表(单位:mg/km)
A | 85 | 80 | 85 | 60 | 90 |
B | 70 | x | 95 | y | 75 |
由于表格被污损,数据x,y看不清,统计员只记得A、B两种出租车的氮氧化物排放量的平均值相等,方差也相等.
(1)求表格中x与y的值;
(2)从被检测的5辆B种型号的出租车中任取2辆,记“氮氧化物排放量超过80mg/km”的车辆数为X,求X=1时的概率.