题目内容

【题目】(本小题满分12)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点

1)若,外接圆的方程;

2)若过点的直线与椭圆 相交于两点,设上一点,且满足为坐标原点),当时,求实数的取值范围.

【答案】I

II,或

【解析】

试题分析:(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.

试题解析:解:(1)由题意知:,又

解得: 椭圆的方程为:2

可得:,,则

,即

,或

,或4

的坐标为时, 外接圆是以为圆心,为半径的圆,即5

的坐标为时,,所以为直角三角形,其外接圆是以线段为直径的圆,圆心坐标为,半径为

外接圆的方程为

综上可知:外接圆方程是,或7

2)由题意可知直线的斜率存在.

Z|X|X|K]

得:

得:9

,结合()得: 11

从而

在椭圆上,,整理得:

,或13

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网