题目内容

19.求证:曲线y=$\frac{{a}^{2}}{x}$(a为非零常数)上任何一点处的切线与坐标轴围成的三角形的面积为定值.

分析 求出函数的导数,求出切线的斜率,求出切线方程,求出x,y轴上的截距,运用三角形的面积公式,即可得证.

解答 证明:曲线y=$\frac{{a}^{2}}{x}$的导数为y′=-$\frac{{a}^{2}}{{x}^{2}}$,
在任一点(x0,y0)处的切线斜率为-$\frac{{a}^{2}}{{{x}_{0}}^{2}}$,
切点为(x0,$\frac{{a}^{2}}{{x}_{0}}$),
则有切线方程:y-$\frac{{a}^{2}}{{x}_{0}}$=-$\frac{{a}^{2}}{{{x}_{0}}^{2}}$(x-x0),
由x=0得,y=$\frac{2{a}^{2}}{{x}_{0}}$,
再由y=0,得,x=2x0
则与两坐标轴围成的三角形面积是:$\frac{1}{2}$|2x0•$\frac{2{a}^{2}}{{x}_{0}}$|=2a2为定值.

点评 本题考查导数的运用:求切线方程,考查直线方程的点斜式,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网