题目内容
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:(t为参数),直线l与曲线C分别交于两点.
(1)写出曲线C和直线l的普通方程;
(2)若点,求的值.
【答案】(1);(2)
【解析】
(1)将两边平方,用代入,即可求出曲线直角坐标方程;参数方程用代入法消去参数,可求得直线的普通方程;
(2)直线化为过具有几何意义的参数方程,代入曲线的方程,设两点对应的参数分别为,根据韦达定理,得出的关系式,结合参数几何意义,将所求的量用表示,即可求解.
(1),
;
.
(2)注意到在直线l上,直线倾斜角为,
, ,
解得直线参数方程为为参数),
联立C的直角坐标方程与l的参数方程,
整理得,设方程的解为,
则,,异号.
不妨设,,
有.
练习册系列答案
相关题目
【题目】某公司人数众多为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,按照男员工和女员工的比例分层抽样,得到名员工的月使用流量(单位:)的数据,其频率分布直方图如图所示.
(1)求的值,并估计这名员工月使用流量的平均值(同一组中的数据用中点值代表;
(2)若将月使用流量在以上(含)的员工称为“手机营销达人”,填写下面的列联表,能否有超过的把握认为“成为手机营销达人与员工的性别有关”;
男员工 | 女员工 | 合计 | |
手机营销达人 | 5 | ||
非手机营销达人 | |||
合计 | 200/span> |
参考公式及数据:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若这名员工中有名男员工每月使用流量在,从每月使用流量在的员工中随机抽取名进行问卷调查,记女员工的人数为,求的分布列和数学期望.