题目内容

3.如图,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,
AB=2,AD=AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.
(Ⅰ)求证:平面ADF⊥平面CBF;
(Ⅱ)求证:PM∥平面AFC.

分析 (Ⅰ)矩形ABCD所在的平面和平面ABEF互相垂直,CB⊥AB,所以可推断出CB⊥平面ABEF,又AF?平面BDC1,所以CB⊥AF,进而由余弦定理求得BF,推断出AF2+BF2=AB2得AF⊥BF同时利用AF∩CB=B判断出AF⊥平面CFB,即可证明平面ADF⊥平面CBF;
(Ⅱ)连结OM延长交BF于H,则H为BF的中点,又P为CB的中点,推断出PH∥CF,又利用线面判定定理推断出PH∥平面AFC,连结PO,同理推断出PO∥平面AFC,利用面面平行的判定定理,推断出平面POO1∥平面AFC,最后利用面面平行的性质推断出PM∥平面AFC

解答 证明:(Ⅰ)∵矩形ABCD所在的平面和平面ABEF互相垂直,CB⊥AB
∴CB⊥平面ABEF,
又AF?平面BDC1,∴CB⊥AF
又AB=2,AF=1,∠BAF=60°,
由余弦定理知BF=$\sqrt{3}$,AF2+BF2=AB2得AF⊥BF
∵AF∩CB=B,∴AF⊥平面CFB
∵AF?平面AFC,
∴平面ADF⊥平面CBF;
(Ⅱ)连结OM延长交BF于H,则H为BF的中点,又P为CB的中点,
∴PH∥CF,又∵AF?平面AFC,
∴PH∥平面AFC
连结PO,则PO∥AC,AC?平面AFC,PO∥平面AFC
PO∩PO1=P,
∴平面POO1∥平面AFC,
PM?平面AFC,
∴PM∥平面AFC.

点评 本题主要考查了面面垂直的判定,线面平行的判定,面面平行的判定,以及线面垂直的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网