题目内容

8.如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面α上.用一平行于平面α的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S和S圆环,那么(  )
A.S>S圆环B.S<S圆环C.S=S圆环D.不确定

分析 根据图形得出,S截面圆=π(R2-d2),r=d,S圆环=π(R2-d2),即可判断.

解答 解:根据题意:①半球的截面圆:r=$\sqrt{{R}^{2}-{d}^{2}}$,S截面圆=π(R2-d2),
②∵取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,
∴r=d,S圆环=π(R2-d2),
根据①②得出:S截面圆=S圆环
故选:C.

点评 本题考查了球有关的截面问题,判断图形结构,求出半径即可,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网