题目内容

19.设二元一次不等式组$\left\{\begin{array}{l}x+2y-19≥0\\ \;x-y+8≥0\\ 2x+y-14≤0\end{array}\right.$所表示的平面区域为M,若函数y=ax(a>0,且a≠1)的图象经过区域M,则实数a的取值范围为[2,9].

分析 先依据不等式组$\left\{\begin{array}{l}x+2y-19≥0\\ \;x-y+8≥0\\ 2x+y-14≤0\end{array}\right.$,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用函数y=ax(a>0,a≠1)的图象特征,结合区域的角上的点即可解决问题

解答 解:平面区域M如如图所示.
求得A(2,10),C(3,8),B(1,9).
由图可知,欲满足条件必有a>1且图象在过B、C两点的图象之间.
当图象过B点时,a1=9,
∴a=9.
当图象过C点时,a3=8,
∴a=2.
故a的取值范围为[2,9].

点评 本题主要考查了用平面区域二元一次不等式组、指数函数的图象与性质,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网