题目内容
【题目】已知数列{an}是等差数列,若a9+3a11<0,a10a11<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于( )
A.20
B.17
C.19
D.21
【答案】C
【解析】解:∵a9+3a11<0,∴由等差数列的性质可得a9+3a11=a9+a11+2a11=a9+a11+a10+a12=2(a11+a10)<0,
又a10a11<0,∴a10和a11异号,
又∵数列{an}的前n项和Sn有最大值,
∴数列{an}是递减的等差数列,
∴a10>0,a11<0,
∴S19= = =19a10>0
∴S20= =10(a1+a20)=10(a10+a11)<0
∴Sn取得最小正值时n等于19
故选:C
【考点精析】认真审题,首先需要了解等差数列的性质(在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列).
练习册系列答案
相关题目
【题目】为了解某社区居民的家庭年收入与年支出的关系,相关部门随机调查了该社区5户家庭,得到如表统计数据表:
收入x(万元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(万元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
(1)根据上表可得回归直线方程 = x+ ,其中 =0.76, = ﹣ ,据此估计,该社区一户年收入为15万元的家庭年支出为多少?
(2)若从这5个家庭中随机抽选2个家庭进行访谈,求抽到家庭的年收入恰好一个不超过10万元,另一个超过11万元的概率.