题目内容

【题目】已知数列{an}是等差数列,若a9+3a11<0,a10a11<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于(
A.20
B.17
C.19
D.21

【答案】C
【解析】解:∵a9+3a11<0,∴由等差数列的性质可得a9+3a11=a9+a11+2a11=a9+a11+a10+a12=2(a11+a10)<0,
又a10a11<0,∴a10和a11异号,
又∵数列{an}的前n项和Sn有最大值,
∴数列{an}是递减的等差数列,
∴a10>0,a11<0,
∴S19= = =19a10>0
∴S20= =10(a1+a20)=10(a10+a11)<0
∴Sn取得最小正值时n等于19
故选:C
【考点精析】认真审题,首先需要了解等差数列的性质(在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网