题目内容
【题目】在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图的五棱锥,且 .
(1)求证:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的余弦值.
【答案】
(1)证明:∵点E,F分别为CD,CB的中点,∴BD∥EF,
∵菱形ABCD的对角线互相垂直,
∴BD⊥AC,∴EF⊥AC,∴EF⊥AO,EF⊥PO,
∵AO平面POA,PO平面POA,AO∩PO=O,
∴EF⊥平面POA,∴BD⊥平面POA.
(2)解:设AO∩BD=H,连接BO,∵∠DAB=60°,∴△ABD为等边三角形,
∴ ,
在Rt△BHO中, ,
在△PBO中,BO2+PO2=10=PB2,∴PO⊥BO,
∵PO⊥EF,EF∩BO=O,EF平面BFED,∴PO⊥平面BFED,
以O为原点,OF所在直线为x轴,AO所在直线y轴,OP所在直线为z轴,建立空间直角坐标系O﹣xyz,
则 .
∴ ,
设平面PAB的法向量为 =(x,y,z),
则 ,取y=1,得 =(﹣ ),
∵BD⊥平面POA,AO∩BD=H,∴平面PAO的一个法向量为 =(﹣2,0,0),
设二面角B﹣AP﹣O的平面角为θ,
则cosθ= = = ,
∴二面角B﹣AP﹣O的余弦值为 .
【解析】(1)推导出BD∥EF,BD⊥AC,EF⊥AC,从而EF⊥AO,EF⊥PO,由此能证明BD⊥平面POA.(2)设AO∩BD=H,连接BO,以O为原点,OF所在直线为x轴,AO所在直线y轴,OP所在直线为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出二面角B﹣AP﹣O的余弦值.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
【题目】传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:
成绩 | 人数 |
A | 9 |
B | 12 |
C | 31 |
D | 22 |
E | 6 |
根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.