题目内容

7.已知F是抛物线x2=4y的焦点,直线y=kx-1与该抛物线交于第一象限内的零点A,B,若|AF|=3|FB|,则k的值是(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

分析 根据抛物线方程求出准线方程与焦点坐标,利用抛物线的定义表示出|AF|与|FB|,
再利用直线与抛物线方程组成方程组,结合根与系数的关系,求出k的值即可.

解答 解:如图所示,
抛物线方程为x2=4y,
∴p=2,准线方程为y=-1,焦点坐标为F(0,1);
设点A(x1,y1),B(x2,y2),
则|AF|=y1+$\frac{p}{2}$=y1+1,|FB|=y2+$\frac{p}{2}$=y2+1;
∵|AF|=3|FB|,
∴y1+1=3(y2+1),即y1=3y2+2;
联立方程组$\left\{\begin{array}{l}{y=kx-1}\\{{x}^{2}=4y}\end{array}\right.$,
消去x,得y2+(2-4k2)y+1=0,
由根与系数的关系得,y1+y2=4k2-2,
即(3y2+2)+y2=4k2-2,
解得y2=k2-1;
代入直线方程y=kx-1中,得x2=k,
再把x2、y2代入抛物线方程x2=4y中,
得k2=4k2-4,
解得k=$\frac{2\sqrt{3}}{3}$,或k=-$\frac{2\sqrt{3}}{3}$(不符合题意,应舍去),
∴k=$\frac{2\sqrt{3}}{3}$.
故选:D.

点评 本题考查了抛物线的标准方程与几何性质的应用问题,也考查了直线与抛物线的综合应用问题,考查了方程思想的应用问题,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网