题目内容
7.“函数f(x)=sin(x+φ)为奇函数”是“φ=0”的必要不充分条件.分析 根据φ=0,得函数f(x)=sin(x+φ)=sinx,运用奇偶性定义判断,再由函数f(x)=sin(x+φ)为奇函数得出sinφ=0,即,φ=kπ,k∈z,
可以判断答案.
解答 解:∵φ=0,∴函数f(x)=sin(x+φ)=sinx,
f(-x)=sin(-x)=-sin(x)=-f(x)
∴f(x)为奇函数,
∵函数f(x)=sin(x+φ)为奇函数,
∴sin(-x+φ)=-sin(x+φ)
sinφcosx-cosφsinx=-sinxcosφ-cosxsinφ
sinφcosx=-cosxsinφ,
即sinφ=0,φ=kπ,k∈z,
根据充分必要条件的定义可判断:
函数f(x)=sin(x+φ)为奇函数”是“φ=0”的必要不充分条件,
故答案为:必要不充分.
点评 本题考查了函数的奇偶性的判断,充分必要条件的判断,属于容易题.
练习册系列答案
相关题目
18.设实数a满足a∈[0,π],若函数f(x)=sinx+sin(x+a)-1没有零点,则实数a的取值范围是( )
A. | ($\frac{2π}{3}$,π] | B. | (0,$\frac{2π}{3}$) | C. | ($\frac{π}{6}$,π] | D. | ($\frac{π}{6}$,$\frac{π}{2}$] |
19.已知a为常数,若曲线y=ax2+3x-lnx存在与直线x+y-1=0垂直的切线,则实数a的取值范围是( )
A. | [-$\frac{1}{2}$,+∞) | B. | (-∞,-$\frac{1}{2}$] | C. | [-1,+∞) | D. | (-∞,-1] |
16.数列{an}是公比为q的等比数列,若ak=m,则ak+1=( )
A. | mqk+l-1 | B. | mql | C. | mql-1 | D. | mql+1 |