题目内容
【题目】已知函数u(x)=xlnx,v(x)x﹣1,m∈R.
(1)令m=2,求函数h(x)的单调区间;
(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值.
【答案】(1)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)
【解析】
(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出
(2)函数f(x)恰有两个极值点x1,x2,则f′(x)=lnx﹣mx=0有两个正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消参数m化简整理可得ln(x1x2)=ln,设t,构造函数g(t)=()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1x2的最大值.
(1)令m=2,函数h(x),∴h′(x),
令h′(x)=0,解得x=e,
∴当x∈(0,e)时,h′(x)>0,当x∈(e,+∞)时,h′(x)<0,
∴函数h(x)单调递增区间是(0,e),单调递减区间是(e,+∞)
(2)f(x)=u(x)﹣v(x)=xlnxx+1,
∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,
∵函数f(x)恰有两个极值点x1,x2,
∴f′(x)=lnx﹣mx=0有两个不等正根,
∴lnx1﹣mx1=0,lnx2﹣mx2=0,
两式相减可得lnx2﹣lnx1=m(x2﹣x1),
两式相加可得m(x2+x1)=lnx2+lnx1,
∴
∴ln(x1x2)=ln,
设t,∵1e,∴1<t≤e,
设g(t)=()lnt,∴g′(t),
令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),
再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,
∴p(t)在(1,e]单调递增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,
∴φ(t)在(1,e]单调递增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,
∴g(t)在(1,e]单调递增,∴g(t)max=g(e),
∴ln(x1x2),∴x1x2
故x1x2的最大值为.