题目内容
【题目】如图:椭圆的顶点为,左右焦点分别为,,
(1)求椭圆的方程;
(2)过右焦点的直线与椭圆相交于两点,试探究在轴上是否存在定点,使得为定值?若存在求出点的坐标,若不存在请说明理由?
【答案】(1);(2)在轴上存在定点,使得为定值
【解析】
(1)根据,和可构造出关于的方程组,求解可得标准方程;(2)当直线斜率不为时,设,,,直线的方程为,联立直线与椭圆方程,列出,代入韦达定理的结果可整理出,根据可求得和的值;当直线斜率为时,可知所求的依然满足是上面所求的值,从而可得结果.
(1)由知:……①
由知:,即……②
又……③
由①②③得:,
所求方程为:
(2)①当直线的斜率不为时
设,,,直线的方程为
由得:
由,得:,故此时点,
②当直线的斜率为时,
综上所述:在轴上存在定点,使得为定值
练习册系列答案
相关题目
【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式: ,.