ÌâÄ¿ÄÚÈÝ
ij¹«Ë¾È«ÄêµÄÀûÈóΪbÔª£¬ÆäÖÐÒ»²¿·Ö×÷Ϊ½±½ð·¢¸ønλְ¹¤£¬½±½ð·ÖÅä·½°¸ÈçÏÂ:Ê×ÏȽ«Ö°¹¤°´¹¤×÷Òµ¼¨(¹¤×÷Òµ¼¨¾ù²»Ïàͬ)´Ó´óµ½Ð¡£¬ÓÉ1µ½nÅÅÐò£¬µÚ1λְ¹¤µÃ½±½ðÔª£¬È»ºóÔÙ½«Óà¶î³ýÒÔn·¢¸øµÚ2λְ¹¤£¬°´´Ë·½·¨½«½±½ðÖðÒ»·¢¸øÿλְ¹¤£¬²¢½«×îºóÊ£Óಿ·Ö×÷Ϊ¹«Ë¾·¢Õ¹»ù½ð.
(1)Éèak(1¡Ük¡Ün)ΪµÚkλְ¹¤ËùµÃ½±½ð½ð¶î£¬ÊÔÇóa2,a3£¬²¢ÓÃk¡¢nºÍb±íʾak(²»±ØÖ¤Ã÷)£»
(2)Ö¤Ã÷ak£¾ak+1(k=1,2,¡,n£1),²¢½âÊʹ˲»µÈʽ¹ØÓÚ·ÖÅäÔÔòµÄʵ¼ÊÒâÒ壻
(3)·¢Õ¹»ù½ðÓënºÍbÓйأ¬¼ÇΪPn(b),¶Ô³£Êýb£¬µ±n±ä»¯Ê±£¬ÇóPn(b).
(1)Éèak(1¡Ük¡Ün)ΪµÚkλְ¹¤ËùµÃ½±½ð½ð¶î£¬ÊÔÇóa2,a3£¬²¢ÓÃk¡¢nºÍb±íʾak(²»±ØÖ¤Ã÷)£»
(2)Ö¤Ã÷ak£¾ak+1(k=1,2,¡,n£1),²¢½âÊʹ˲»µÈʽ¹ØÓÚ·ÖÅäÔÔòµÄʵ¼ÊÒâÒ壻
(3)·¢Õ¹»ù½ðÓënºÍbÓйأ¬¼ÇΪPn(b),¶Ô³£Êýb£¬µ±n±ä»¯Ê±£¬ÇóPn(b).
(1) ak= (1£)k£1b; (2) ½±½ð·ÖÅä·½°¸ÌåÏÖÁË¡°°´ÀÍ·ÖÅ䡱»ò¡°²»³Ô´ó¹ø·¹¡±µÄÔÔò£»(3).
(1)µÚ1λְ¹¤µÄ½±½ða1=£¬
µÚ2λְ¹¤µÄ½±½ða2=(1£)b£¬
µÚ3λְ¹¤µÄ½±½ða3=(1£)2b£¬¡£¬
µÚkλְ¹¤µÄ½±½ðak= (1£)k£1b;
(2)ak£ak+1=(1£)k£1b£¾0£¬´Ë½±½ð·ÖÅä·½°¸ÌåÏÖÁË¡°°´ÀÍ·ÖÅ䡱»ò¡°²»³Ô´ó¹ø·¹¡±µÄÔÔò¡£
(3)Éèfk(b)±íʾ½±½ð·¢¸øµÚkλְ¹¤ºóËùÊ£ÓàÊý£¬
Ôòf1(b)=(1£)b,f2(b)=(1£)2b,¡,fk(b)=(1£)kb.
µÃPn(b)=fn(b)=(1£)nb,
¹Ê.
µÚ2λְ¹¤µÄ½±½ða2=(1£)b£¬
µÚ3λְ¹¤µÄ½±½ða3=(1£)2b£¬¡£¬
µÚkλְ¹¤µÄ½±½ðak= (1£)k£1b;
(2)ak£ak+1=(1£)k£1b£¾0£¬´Ë½±½ð·ÖÅä·½°¸ÌåÏÖÁË¡°°´ÀÍ·ÖÅ䡱»ò¡°²»³Ô´ó¹ø·¹¡±µÄÔÔò¡£
(3)Éèfk(b)±íʾ½±½ð·¢¸øµÚkλְ¹¤ºóËùÊ£ÓàÊý£¬
Ôòf1(b)=(1£)b,f2(b)=(1£)2b,¡,fk(b)=(1£)kb.
µÃPn(b)=fn(b)=(1£)nb,
¹Ê.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿