题目内容
已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列
a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.
a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.
(1) bn=2·3n-1-1 (2)
(1)由题意知a52=a1·a17,即(a1+4d)2=a1(a1+16d)a1d=2d2,
∵d≠0,∴a1=2d,数列{}的公比q==3,
∴=a1·3n-1 ①
又=a1+(bn-1)d= ②
由①②得a1·3n-1=·a1.∵a1=2d≠0,∴bn=2·3n-1-1.
(2)Tn=Cb1+Cb2+…+Cbn
=C (2·30-1)+C·(2·31-1)+…+C(2·3n-1-1)
=(C+C·32+…+C·3n)-(C+C+…+C)
=[(1+3)n-1]-(2n-1)= ·4n-2n+,
∵d≠0,∴a1=2d,数列{}的公比q==3,
∴=a1·3n-1 ①
又=a1+(bn-1)d= ②
由①②得a1·3n-1=·a1.∵a1=2d≠0,∴bn=2·3n-1-1.
(2)Tn=Cb1+Cb2+…+Cbn
=C (2·30-1)+C·(2·31-1)+…+C(2·3n-1-1)
=(C+C·32+…+C·3n)-(C+C+…+C)
=[(1+3)n-1]-(2n-1)= ·4n-2n+,
练习册系列答案
相关题目