题目内容
14.设g(x+1)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{2x,1<x<2}\end{array}\right.$,求g(x).分析 根据已知中分段函数g(x+1)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{2x,1<x<2}\end{array}\right.$,利用换元法可得g(x)的解析式.
解答 解:令t=x+1,则x=t-1,
则g(t)=$\left\{\begin{array}{l}{(t-1)}^{2},0≤t-1≤1\\ 2(t-1),1<t-1<2\end{array}\right.$=$\left\{\begin{array}{l}{t}^{2}-2t+1,1≤t≤2\\ 2t-2,2<t<3\end{array}\right.$,
故g(x)=$\left\{\begin{array}{l}{x}^{2}-2x+1,1≤x≤2\\ 2x-2,2<x<3\end{array}\right.$
点评 本题考查的知识点是分段函数的应用,函数解析式的求解及常用方法,难度中档.
练习册系列答案
相关题目
3.若不等式xy>x+z对任意x∈(0,+∞),y∈(1,+∞)恒成立,则实数z的取值范围是( )
A. | (-∞,0) | B. | (-∞,0] | C. | [0,+∞) | D. | (1,+∞) |