题目内容

一束光线从点出发,经直线上一点反射后,恰好穿过点.(Ⅰ)求点关于直线的对称点的坐标;
(Ⅱ)求以为焦点且过点的椭圆的方程;
(Ⅲ)设直线与椭圆的两条准线分别交于两点,点为线段上的动点,求点 到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标.

(Ⅰ)的坐标为
(Ⅱ)所求椭圆方程为
(Ⅲ)最小值=,此时点的坐标为 

(Ⅰ)设的坐标为,则
解得, 因此,点的坐标为
(Ⅱ),根据椭圆定义,

.   ∴所求椭圆方程为
(Ⅲ)椭圆的准线方程为
设点的坐标为,表示点的距离,表示点到椭圆的右准线的距离.

,令,则

时取得最小值.
因此,最小值=,此时点的坐标为-----------------14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网