题目内容
【题目】已知函数f(x)=|x2﹣1|+x2+kx.
(1)若对于区间(0,+∞)内的任意x,总有f(x)≥0成立,求实数k的取值范围;
(2)若函数f(x)在区间(0,2)内有两个不同的零点x1 , x2 , 求:
①实数k的取值范围;
② 的取值范围.
【答案】
(1)解:f(x)≥0|x2﹣1|+x2+kx≥0k≥﹣ ,x∈(0,+∞),
记g(x)=﹣ = ,易知g(x)在(0,1]上递增,在(1,+∞)上递减,
∴g(x)max=g(1)=﹣1,
∴k≥﹣1;
(2)解:①(ⅰ)0<x≤1时,方程f(x)=0化为kx+1=0,k=0时,无解;k≠0时,x=﹣ ;
(ⅱ)1<x<2时,方程f(x)=0化为2x2+kx﹣1=0,x= ,而其中 < ≤0,
故f(x)=0在区间(1,2)内至多有一解x= ;
综合(ⅰ)(ⅱ)可知,k≠0,且0<x≤1时,方程f(x)=0有一解x=﹣ ,故k≤﹣1;
1<x<2时,方程f(x)=0也仅有一解x= ,令1< <2,得﹣ <k<﹣1,
∴实数k的取值范围是﹣ <k<﹣1;
②方程f(x)=0的两解分别为x1=﹣ ,x2= ,
=﹣k+ =﹣k+ = =2x2∈(2,4).
【解析】(1)由f(x)≥0分离出参数k,得k≥﹣ ,x∈(0,+∞),记g(x)=﹣ ,则问题等价于k≥g(x)max , 由单调性可得g(x)max;(2)①(i)当0<x≤1时,方程f(x)=0为一次型方程,易判断k≠0时有一解;当1<x<2时,方程f(x)=0为二次方程,可求得两解,易判断其一不适合,令另一解大于1小于2,可得k的范围,综合可得结论;(ii)由①易知两零点x1 , x2 , 从而可表示出 ,化简可得为2x2 , 结合(ii)可得结论;
【题目】为了增强环保意识,我校从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:
优秀 | 非优秀 | 总计 | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(2)为参加市里举办的环保知识竞赛,学校举办预选赛,已知在环保测试中优秀的同学通过预选赛的概率为 ,现在环保测试中优秀的同学中选3人参加预选赛,若随机变量X表示这3人中通过预选赛的人数,求X的分布列与数学期望.
附:K2=
P(K2≥k) | 0.500 | 0.400 | 0.100 | 0.010 | 0.001 |
k | 0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
【题目】《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;在80mg/100mL(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如表:
酒精含量(mg/100mL) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
人数 | 3 | 4 | 1 | 4 | 2 | 3 | 2 | 1 |
(1)绘制出检测数据的频率分布直方图(计算并标上选取的y轴单位长度,在图中用实线画出矩形框并用阴影表示),估计检测数据中酒精含量的众数
(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的中位数、平均数(请写出计算过程).