题目内容
【题目】极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).
(1)求C的直角坐标方程;
(2)直线l: 为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.
【答案】
(1)解:∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)
∴ρ2=2ρcosθ+2ρsinθ
∴x2+y2=2x+2y
即(x﹣1)2+(y﹣1)2=2
(2)解:将l的参数方程代入曲线C的直角坐标方程,
得t2﹣t﹣1=0,
所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|= = .
【解析】(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2 , x=ρcosθ,y=ρsinθ,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.
练习册系列答案
相关题目
【题目】为大力提倡“厉行节俭,反对浪费”,某高中通过随机询问100名性别不同的学生是否做到“光盘”行动,得到如表所示联表及附表:
做不到“光盘”行动 | 做到“光盘”行动 | |
男 | 45 | 10 |
女 | 30 | 15 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
经计算:K2= ≈3.03,参考附表,得到的正确结论是( )
A.有95%的把握认为“该学生能否做到光盘行到与性别有关”
B.有95%的把握认为“该学生能否做到光盘行到与性别无关”
C.有90%的把握认为“该学生能否做到光盘行到与性别有关”
D.有90%的把握认为“该学生能否做到光盘行到与性别无关”