题目内容
(本小题满分12分)
已知等差数列{an}中a2=8,S10=185.
(1)求数列{an}的通项公式an;
(2)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个新数列{bn},试求{bn}的前n项和An.
已知等差数列{an}中a2=8,S10=185.
(1)求数列{an}的通项公式an;
(2)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个新数列{bn},试求{bn}的前n项和An.
解:(1)设{an}的首项为a,公差为d,
∴∴an=5+3(n-1),即an=3n+2
(2)设b1=a2,b2=a4,b3=a8,bn=a2n=3×2n+2
∴An=(3×2+2)+(3×22+2)+…+(3×2n+2)=3×(2+22+…+2n)+2n
=3×+2n=6×2n-6+2n
∴∴an=5+3(n-1),即an=3n+2
(2)设b1=a2,b2=a4,b3=a8,bn=a2n=3×2n+2
∴An=(3×2+2)+(3×22+2)+…+(3×2n+2)=3×(2+22+…+2n)+2n
=3×+2n=6×2n-6+2n
略
练习册系列答案
相关题目