题目内容
【题目】数列的前项和为,记,数列满足,,且数列的前项和为.
(1)① 计算,的值;
② 猜想,满足的关系式,并用数学归纳法加以证明;
(2)若数列通项公式为,证明:.
【答案】(1)①,;②,证明见解析;(2)见解析
【解析】
(1)①根据题中给的递推公式直接计算,即可.
②由①中可知,,故猜想,再根据数学归纳法的方法证明即可.
(2)根据可求得,再利用(1)中的结论放缩可得,再构造函数证明其单调性,再累加证明即可.
(1)①,,
所以,.
②
.
猜想:. (也可以写成)
1°当时,成立;
2°假设当时,成立,
当时,.
综上1°,2°所述,.
(2)因,所以其前项和.
所以由(1)知.
令,则,所以在上单调递减,
又,所以.令,所以,
即,
即,所以.
当时,,,……,,
上述个式子相加,得,
所以,则,即,故.
【题目】随着夏季的到来,冰枕成为市面上的一种热销产品,某厂家为了调查冰枕在当地大学的销售情况,作出调研,并将所得数据统计如下表所示:
表一:
温度在30℃以下 | 温度在30℃以上 | 总计 | |
女生 | 10 | 30 | 40 |
男生 | 40 | 20 | 60 |
总计 | 50 | 50 | 100 |
随后在该大学一个小卖部调查了冰枕的出售情况,并将某月的日销售件数(x)与销售天数(y)统计如下表所示:
表二:
第天 | 2 | 4 | 6 | 8 | 10 |
(件) | 3 | 6 | 7 | 10 | 12 |
(1)请根据表二中的数据在下列网格纸中绘制散点图;
(2)请根据表二中提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)从(1)(2)中的数据及回归方程我们可以得到,销售件数随着销售天数的增长而增长,但无法判断男、女生对冰枕的选择是否与温度有关,请结合表一中的数据,并自己设计方案来判段是否有99.9%的可能性说明购买冰枕的性别与温度相关.
参考数据及公式:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
;,其中.
【题目】某产品的三个质量指标可用有序实数对表示,用综合指标评价该产品的等级.若,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号 | |||||
产品指标 | |||||
产品编号 | |||||
产品指标 |
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样品的一等品中,随机抽取2件产品,设事件为“在取出的2件产品中,每件产品的综合指标都等于4”,求事件发生的概率.