题目内容

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N+).
(Ⅰ)证明数列{Sn}是等比数列;
(Ⅱ)求数列{an}的通项an
(Ⅲ)求数列{n•an}的前n项和Tn
(Ⅰ)∵an+1=2Sn,∴Sn+1-Sn=2Sn,∴
Sn+1
Sn
=3

又∵S1=a1=1,
∴数列{Sn}是首项为1,公比为3的等比数列,Sn=3n-1(n∈N*).…(4分)
(Ⅱ)当n≥2时,an=2Sn-1=2•3n-2(n≥2),
an=
1,(n=1)
2•3n-2,(n≥2).
…(8分)
(Ⅲ)Tn=a1+2a2+3a3+…+nan
当n=1时,T1=1;
当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2,…①
3Tn=3+4•31+6•32+…+2n•3n-1,…②…(11分)
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1
=2+2•
3(1-3n-2)
1-3
-2n•3n-1=-1+(1-2n)•3n-1

Tn=
1
2
+(n-
1
2
)3n-1(n≥2)
.…(13分)
又∵T1=a1=1也满足上式,
Tn=
1
2
+(n-
1
2
)3n-1(n∈N*)
.…(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网