题目内容

5.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量$\overrightarrow{{e}_{1}}$=$(\begin{array}{l}{2}\\{3}\end{array})$并有特征值λ2=-1及属于特征值-1的一个特征向量$\overrightarrow{{e}_{2}}$=$(\begin{array}{l}{1}\\{-1}\end{array})$,$\overrightarrow{α}$=$(\begin{array}{l}{-1}\\{1}\end{array})$
(Ⅰ)求矩阵M;
(Ⅱ)求M5$\overrightarrow{α}$.

分析 (Ⅰ)利用矩阵的运算法则进行求解;(Ⅱ)利用矩阵的乘法法则进行求解.

解答 解:(Ⅰ)设M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$
则$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{2}\\{3}\end{array}]$=4$[\begin{array}{l}{2}\\{3}\end{array}]$=$[\begin{array}{l}{8}\\{12}\end{array}]$,∴$\left\{\begin{array}{l}{2a+3b=8}\\{2c+3d=12}\end{array}\right.$①
又$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{1}\\{-1}\end{array}]$=(-1)$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{-1}\\{1}\end{array}]$,∴$\left\{\begin{array}{l}{a-b=-1}\\{c-d=1}\end{array}\right.$②
由①②可得a=1,b=2,c=3,d=2,∴M=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$;
(Ⅱ)易知$\overrightarrow{α}$=0•$[\begin{array}{l}{2}\\{3}\end{array}]$+(-1)$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴M5$\overrightarrow{α}$=(-1)6$\overrightarrow{α}$=$[\begin{array}{l}{-1}\\{1}\end{array}]$.

点评 本题考查矩阵的运算法则,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网