题目内容

【题目】已知函数fx)=ax2+bx+ca≠0),满足f(0)=2,fx+1)﹣fx)=2x﹣1

(1)求函数fx)的解析式;

(2)当x∈[﹣1,2]时,求函数的最大值和最小值.

(3)若函数gx)=fx)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.

【答案】(1);(2)最大值,最小值;(3).

【解析】

(1)f(0)=2,可以求出c 的值,再利用fx+1)﹣fx)=2x﹣1可以求出ab的值,进而求出函数fx)的解析式;(2)函数fx是二次函数,利用二次函数在[﹣1,2]的单调性可以求出最大值和最小值;(3)利用gx的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出m的取值范围

(1)由f(0)=2,得c=2,

fx+1)﹣fx)=2x﹣1

2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,

所以fx)=x2﹣2x+2.

(2)fx)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1[﹣1,2]

所以fx[﹣1,1]单调递减,在(1,2]单调递增

fminx)=f(1)=1,

f(﹣1)=5,f(2)=2,5>2

所以fmaxx)=f(﹣1)=5.

(3)x2﹣(2+mx+2,若gx)的两个零点分别在区间(﹣1,2)和(2,4)内,

则满足

解得:.

故答案为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网