题目内容
双曲线方程为x-2y=1.则它的右焦点坐标是( )
A.(,0) | B.(,0) | C.(,0) | D.(,0) |
C
解析试题分析:根据双曲线的方程可知,双曲线方程为x-2y=1.焦点在x轴上,且 ,那么可知 ,因此可知右焦点坐标为(,0),选C.
考点:双曲线的基本性质
点评:本题主要考查双曲线的基本性质.在求双曲线的焦点时,一定要先判断出焦点所在位置,在下结论,以免出错.
练习册系列答案
相关题目
若双曲线(,)的一条渐近线被圆截得的弦长为,则双曲线的离心率为
A. | B. |
C. | D. |
已知抛物线的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则的面积为( )
A.4 | B.8 | C.16 | D.32 |
已知F1、F2分别是双曲线的左、右焦点,P为双曲线右支上的任意一点.若,则双曲线离心率的取值范围是( )
A.(1,2] | B.[2 +) | C.(1,3] | D.[3,+) |
已知是抛物线的焦点,是抛物线上的两点,,则线段的中点到轴的距离为( )
A. | B.1 | C. | D. |
若是任意实数,则方程x2+4y2sin=1所表示的曲线一定不是( )
A.圆 | B.双曲线 | C.直线 | D.抛物线 |