题目内容
6.已知an=($\frac{1}{2}$)n,把数列{an}的各项排列成如下的三角形状,记A(m,n)表示第m行的第n个数,则A(10,13)=( )
A. | ${(\frac{1}{2})^{93}}$ | B. | ${(\frac{1}{2})^{92}}$ | C. | ${(\frac{1}{2})^{94}}$ | D. | ${(\frac{1}{2})^{112}}$ |
分析 本题是数列题,已知数列的通项公式,根据条件给出的几何图形中的规律,求出某个数在数列中的项数,从而求出该项.
解答 解:将三角形状中各个数从上到下,从左到右依次展开,排成一列,得到a1,a2,a3,a4…
设第m行的第n个数A(m,n)是数列{an}中的第k项,
由于第一行有1个数,第二行有3个数,第三行有5个数,…,第(m-1)行有(2m-3)个数.
其中1,3,5,…(2m-3),成等差数列,首项为1,公差为2.
则:k=1+3+5+…+(2m-3)+n=(m-1)2+n.
A(10,13)中,m=10,n=13,k=1+3+5+…+17+13=92+13=94
由通项公式an=($\frac{1}{2}$)n,得:A(10,13)=($\frac{1}{2}$)94.
故选:C.
点评 本题考查了归纳推理和数列通项公式的应用,重点是用数列的通项公式求数列的某一项,难点是项数的研究,要善于发现项数的规律.
练习册系列答案
相关题目
16.在△ABC中,B=$\frac{π}{6}$,c=150,b=50$\sqrt{3}$,则△ABC为( )
A. | 直角三角形 | B. | 等腰三角形或直角三角形 | ||
C. | 等边三角形 | D. | 等腰三角形 |
17.要完成下列2项调查:
①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;
②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.
应采用的抽样方法是( )
①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;
②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.
应采用的抽样方法是( )
A. | ①用随机抽样法 ②用系统抽样法 | B. | ①用分层抽样法 ②用随机抽样法 | ||
C. | ①用系统抽样法 ②用分层抽样法 | D. | ①、②都用分层抽样法 |
14.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.
(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?
(Ⅱ)若这8位同学的数学、物理分数对应如下表:
根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}\sqrt{\sum_i^n{({y_i}-\overline y}}{)^2}}}$;回归直线的方程是:$\widehat{y}$=bx+a.
其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$;
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\sum_{i=1}^{8}$(x1-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(y1-$\overline{y}$)2≈456;$\sum_{i=1}^{8}$(x1-$\overline{x}$)(y1-$\overline{y}$)≈688,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.
(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?
(Ⅱ)若这8位同学的数学、物理分数对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}\sqrt{\sum_i^n{({y_i}-\overline y}}{)^2}}}$;回归直线的方程是:$\widehat{y}$=bx+a.
其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$;
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\sum_{i=1}^{8}$(x1-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(y1-$\overline{y}$)2≈456;$\sum_{i=1}^{8}$(x1-$\overline{x}$)(y1-$\overline{y}$)≈688,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.
1.在△ABC中,已知a2-b2-c2=$\sqrt{2}$bc,则角B+C等于( )
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
11.设已求出一条直线回归方程为$\widehaty=2-1.5x$,则变量x增加一个单位时( )
A. | y平均增加1.5个单位 | B. | y平均减少1.5个单位 | ||
C. | y平均增加2个单位 | D. | y平均减少2个单位 |
18.据气象预报,某地区下月有小洪水的概率为0.2,有大洪水的概率为0.05.该地区某工地上有一台大型设备,两名技术人员就保护设备提出了以下两种方案.
方案一:建一保护围墙,需花费4000元,但围墙无法防止大洪水,当大洪水来临时,设备会受损,损失费为30000元.
方案二:不采取措施,希望不发生洪水,此时小洪水来临将损失15000元,大洪水来临将损失30000元.
以下说法正确的是( )
方案一:建一保护围墙,需花费4000元,但围墙无法防止大洪水,当大洪水来临时,设备会受损,损失费为30000元.
方案二:不采取措施,希望不发生洪水,此时小洪水来临将损失15000元,大洪水来临将损失30000元.
以下说法正确的是( )
A. | 方案一的平均损失比方案二的平均损失大 | |
B. | 方案二的平均损失比方案一的平均损失大 | |
C. | 方案一的平均损失与方案二的平均损失一样大 | |
D. | 方案一的平均损失与方案二的平均损失无法计算 |
15.已知1,2,3,4,x1,x2,x3的平均数是8,那么x1+x2+x3的值是( )
A. | 14 | B. | 22 | C. | 32 | D. | 46 |