题目内容

【题目】如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(Ⅰ)若DE∥平面A1MC1 , 求
(Ⅱ)求直线BG和平面A1MC1所成角的余弦值.

【答案】解:(Ⅰ)取BC中点N,连结MN,C1N, ∵M,N分别为AB,CB中点
∴MN∥AC∥A1C1
∴A1 , M,N,C1四点共面,
且平面BCC1B1∩平面A1MNC1=C1N,
又DE∩平面BCC1B1
且DE∥平面A1MC1 , ∴DE∥C1N,
∵D为CC1的中点,∴E是CN的中点,
=
(Ⅱ)连结B1M,
因为三棱柱ABC﹣A1B1C1为直三棱柱,∴AA1⊥平面ABC,
∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1
∵M是AB的中点,∴B1M⊥A1M,
又A1C1⊥平面ABB1A1
∴A1C1⊥B1M,从而B1M⊥平面A1MC1
∴MC1是B1C1在平面A1MC1内的射影,
∴B1C1与平面A1MC1所成的角为∠B1C1M,
又B1C1∥BC,
∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角
设AB=2AA1=2,且三角形A1MC1是等腰三角形
∴A1M=A1C1= ,则MC1=2,B1C1=
∴cos∠B1C1M= ,∴直线BC和平面A1MC1所成的角的余弦值为

【解析】(Ⅰ)取BC中点N,连结MN,C1N,由已知得A1 , M,N,C1四点共面,由已知条件推导出DE∥C1N,从而求出 .(Ⅱ)连结B1M,由已知条件得四边形ABB1A1为矩形,B1C1与平面A1MC1所成的角为∠B1C1M,由此能求出直线BC和平面A1MC1所成的角的余弦值.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网