题目内容

【题目】已知点P是椭圆C上任一点,点P到直线l1:x=﹣2的距离为d1 , 到点F(﹣1,0)的距离为d2 , 且 = .直线l与椭圆C交于不同两点A、B(A,B都在x轴上方),且∠OFA+∠OFB=180°.
(1)求椭圆C的方程;
(2)当A为椭圆与y轴正半轴的交点时,求直线l方程;
(3)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

【答案】
(1)解:设P(x,y),则

化简得:

∴椭圆C的方程为:


(2)解:∵A(0,1),F(﹣1,0),

,∠OFA+∠OFB=180°,

∴kBF=﹣1,BF:y=﹣1(x+1)=﹣x﹣1

代入 ,得:3x2+4x=0,

,代入y=﹣x﹣1得

,∴


(3)证明:由于∠OFA+∠OFB=180°,所以B关于x轴的对称点B1在直线AF上.

设A(x1,y1),B(x2,y2),B1(x2,﹣y2

设直线AF方程:y=k(x+1),代入

得:

令y=0,得:

y1=k(x1+1),y2=k(x2+1),

=

∴直线l总经过定点M(﹣2,0).


【解析】(1)设P(x,y),得 ,由此能求出椭圆C的方程.(2)由已知条件得kBF=﹣1,BF:y=﹣1(x+1)=﹣x﹣1,代入 ,得:3x2+4x=0,由此能求出直线l方程.(3)B关于x轴的对称点B1在直线AF上.设直线AF方程:y=k(x+1),代入 ,得: ,由此能证明直线l总经过定点M(﹣2,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网