题目内容

【题目】设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.
(Ⅰ)作出函数f(x)的图象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.

【答案】解:(Ⅰ)函数f(x)=|x﹣1|﹣|2x+1|= , 画出图象如图,

(Ⅱ)由(Ⅰ)知,当x=﹣ 时,函数f(x)取得最大值为m=
∵a2+2c2+3b2=m= =(a2+b2)+2(c2+b2)≥2ab+4bc,
∴ab+2bc≤ ,当且仅当a=b=c=1时,取等号,
故ab+2bc的最大值为
【解析】(Ⅰ)利用分段函数,化简函数的解析式,从而作函数的图象,结合图象,求得函数的最大值m.(Ⅱ)由题意可得a2+2c2+3b2=m= =(a2+b2)+2(c2+b2),利用基本不等式求它的最值.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网