题目内容
(本题满分15分)已知函数其中,设.(1)求函数的定义域,判断的奇偶性,并说明理由;(2)若,求使成立的的集合
(1)奇函数,理由略(2)
解析
设函数(Ⅰ)若函数在处取得极小值是,求的值; (Ⅱ)求函数的单调递增区间;(Ⅲ)若函数在上有且只有一个极值点, 求实数的取值范围.
(14分)函数是定义在(-1,1)上的奇函数,且(1)求函数的解析式;(2)利用定义证明在(-1,1)上是增函数;(3)求满足的的范围.
(本小题满分16分)设R,m,n都是不为1的正数,函数(1)若m,n满足,请判断函数是否具有奇偶性. 如果具有,求出相应的t的值;如果不具有,请说明理由;(2)若,且,请判断函数的图象是否具有对称性. 如果具有,请求出对称轴方程或对称中心坐标;若不具有,请说明理由.
设是定义在R上的函数(1)f(x)可能是奇函数吗?(2)当a=1时,试研究f(x)的单调性
(本题满分14分)已知函数.(Ⅰ) 讨论的奇偶性; (Ⅱ)判断在上的单调性并用定义证明.
(满分16分)某医药研究所开发一种新药,据检测,如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克)与服药后的时间(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线 ABC 是函数()的图象,且是常数.(1)写出服药后y与x的函数关系式;(2)据测定:每毫升血液中含药量不少于2 微克时治疗疾病有效.若某病人第一次服药时间为早上 6 : 00 ,为了保持疗效,第二次服药最迟应该在当天的几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药3个小时后,该病人每毫升血液中含药量为多少微克。(结果用根号表示)
(本小题满分10分)已知, 若在区间上的最大值为, 最小值为, 令.(1) 求的函数表达式;(2) 判断的单调性, 并求出的最小值.
(15分)已知函数是偶函数[||](1) 求的值;(2) 设,若函数与的图象有且只有一个公共点,求实数的取值范围。