题目内容

【题目】已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}. (Ⅰ)求a的值;
(Ⅱ)若f(x)﹣2f( )≤k恒成立,求k的取值范围.

【答案】解:(Ⅰ)不等式f(x)≤3,即|ax+1|≤3,即﹣3≤ax+1≤3,即﹣4≤ax≤2. 当a>0时,求得﹣ ≤x≤ ,再根据它的解集为{x|﹣2≤x≤1},可得 ,求得a=2.
当a<0时,求得 ≤x≤﹣ ,再根据它的解集为{x|﹣2≤x≤1},可得 ,a无解.
综上可得,a=2,f(x)=|2x+1|.
(Ⅱ)若f(x)﹣2f( )≤k恒成立,即|2x+1|﹣2|x+1|≤k恒成立.
令g(x)=|2x+1|﹣2|x+1|= ,故函数g(x)的最大值为1,
故k≥1
【解析】(Ⅰ)由条件分类讨论,解绝对值不等式,求得不等式f(x)≤3的解集.再根据不等式f(x)≤3的解集为{x|﹣2≤x≤1},求得a的值.(Ⅱ)由题意可得|2x+1|﹣2|x+1|≤k恒成立,令g(x)=|2x+1|﹣2|x+1|,利用分段函数求得g(x)的最大值,可得k的范围.
【考点精析】掌握绝对值不等式的解法是解答本题的根本,需要知道含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网