题目内容
【题目】某小区为了加强对“新型冠状病毒”的防控,确保居民在小区封闭期间生活不受影响,小区超市采取有力措施保障居民正常生活物资供应.为做好甲类生活物资的供应,超市对社区居民户每天对甲类生活物资的购买量进行了调查,得到了以下频率分布直方图.
(1)从小区超市某天购买甲类生活物资的居民户中任意选取5户.
①若将频率视为概率,求至少有两户购买量在(单位:)的概率是多少?
②若抽取的5户中购买量在(单位:)的户数为2户,从5户中选出3户进行生活情况调查,记3户中需求量在(单位:)的户数为,求的分布列和期望;
(2)将某户某天购买甲类生活物资的量与平均购买量比较,当超出平均购买量不少于时,则称该居民户称为“迫切需求户”,若从小区随机抽取10户,且抽到k户为“迫切需求户”的可能性最大,试求k的值.
【答案】(1)①;②详见解析;(2).
【解析】
(1)事件“从小区超市购买甲类物资的居民户中任意选取1户,购买量在,”发生的概率为.
①记事件“从小区超市购买甲类物资的居民户中任意选取5户,则至少有两户购买量在,”为,利用独立重复实验的概率求解即可.
②随机变量所有可能的取值为0,1,2.求出概率得到分布列,然后求解期望.
(2)每天对甲类物资的购买量平均值,求出从小区随机抽取中随机抽取一户为“迫切需求户”的概率为,判断,通过若户的可能性最大,列出不等式组,求解即可.
(1)由题意,事件“从小区超市购买甲类生活物资的居民户中任意选取1户,购买量在”发生的概率为.
①记事件“从小区超市购买甲类生活物资的居民户中任意选取5户,则至少有两户购买量在”为A,则.
②随机变量所有可能的取值为0,1,2.则
,,,
0 | 1 | 2 | |
所以
(2)每天对甲类生活物资的需求平均值为
()
则购买甲类生活物资为“迫切需求户”的购买量为,从小区随机抽取中随机抽取一户为“迫切需求户”的概率为,
若从小区随机抽取10户,且抽到X户为“迫切需求户”,,
若k户的可能性最大,则,
,得,
解得,由于,故.
【题目】近年来,国家相关政策大力鼓励创新创业种植业户小李便是受益者之一,自从2017年毕业以来,其通过自主创业而种植的某种农产品广受市场青睐,他的种植基地也相应地新增加了一个平时小李便带着部分员工往返于新旧基地之间进行科学管理和经验交流,新旧基地之间开车单程所需时间为,由于不同时间段车流量的影响,现对50名员工往返新旧基地之间的用时情况进行统计,结果如下:
(分钟) | 30 | 35 | 40 | 45 | 50 |
频数(人) | 10 | 20 | 10 | 5 | 5 |
(1)若有50名员工参与调查,现从单程时间在35分钟,40分钟,45分钟的人员中按分层抽样的方法抽取7人,再从这7人中随机抽取3人进行座谈,用表示抽取的3人中时间在40分钟的人数,求的分布列和数学期望;
(2)某天,小李需要从旧基地驾车赶往新基地召开一个20分钟的紧急会议,结束后立即返回旧基地.(以50名员工往返新旧基地之间的用时的频率作为用时发生的概率)
①求小李从离开旧基地到返回旧基地共用时间不超过110分钟的概率;
②若用随机抽样的方法从旧基地抽取8名骨干员工陪同小李前往新基地参加此次会议,其中有名员工从离开旧基地到返回旧基地共用时间不超过110分钟,求随机变量的方差.
【题目】为响应“文化强国建设”号召,并增加学生们对古典文学的学习兴趣,雅礼中学计划建设一个古典文学熏陶室.为了解学生阅读需求,随机抽取200名学生做统计调查.统计显示,男生喜欢阅读古典文学的有64人,不喜欢的有56人;女生喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导学生积极参与阅读古典文学书籍,语文教研组计划牵头举办雅礼教育集团古典文学阅读交流会.经过综合考虑与对比,语文教研组已经从这200人中筛选出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜欢古典文学.现从这9名代表中任选3名男生代表和2名女生代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |